On monotone pointwise contractions in Banach and metric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Asymptotic Pointwise Contractions in Metric Spaces

We discuss the existence of fixed points of asymptotic pointwise mappings in metric spaces. This is the nonlinear version of some known results proved in Banach spaces. We also discuss the case of multivalued mappings. MSC: Primary 47H09; Secondary 47H10.

متن کامل

Monotone Generalized Nonlinear Contractions in Partially Ordered Metric Spaces

1 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11 000 Belgrade, Serbia 2 Faculty of Electrical Engineering, University of Belgrade, Boulevard Kralja Aleksandra 73, 11 000 Belgrade, Serbia 3 Faculty of Mechanical Engineering, University of Kragujevac, Dositejeva 19, 36 000 Kraljevo, Serbia 4 Department of Applied Mathematics, Changwon National University, Changw...

متن کامل

On Best Proximity Points in metric and Banach spaces

Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...

متن کامل

$psi -$weak Contractions in Fuzzy Metric Spaces

In this paper, the notion of $psi -$weak contraction cite{Rhoades} isextended to fuzzy metric spaces. The existence of common fixed points fortwo mappings is established where one mapping is $psi -$weak contractionwith respect to another mapping on a fuzzy metric space. Our resultgeneralizes a result of Gregori and Sapena cite{Gregori}.

متن کامل

On contractions in probabilistic metric spaces

Two types of contractions are used for mappings defined on probabilistic metric spaces. The first type was introduced by V.M. Sehgal [15-16 ], the second type by T.L. Hicks [7]. Since then, many fixed point results were obtained. In this paper we introduce the concept of a probabilistic g−contraction, which is a generalization of a probabilistic contraction of Hicks’ type and prove some fixed p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fixed Point Theory and Applications

سال: 2015

ISSN: 1687-1812

DOI: 10.1186/s13663-015-0381-7